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The dynamics of predator-prey models with the Beddington-DeAngelis func-
tional response are analyzed, primarily from the viewpoint of permanence (uni-
form persistence). The Beddington—DeAngelis functional response is similar to the
Holling type 2 functional response but contains an extra term describing mutual
interference by predators. Both spatially homogeneous models based on ordinary
differential equations and reaction-diffusion models are considered. Criteria for
permanence and for predator extinction are derived. For systems without diffusion
or with no-flux boundary conditions, criteria are derived for the existence of a glob-
ally stable coexistence.equilibrium or, alternatively, for the existence of periodic
orbits.  © 2001 Academic Press
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1. INTRODUCTION

The goal of this paper is to give a description of some of the basic dynam-
ical properties of predator-prey models which incorporate the Beddington—
DeAngelis functional response, with or without diffusion. The simplest
version of a predator-prey model with Beddington-DeAngelis functional
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a globally attracting equilibrium. In Section 4 we extend the conditions
for permanence and extinction to the corresponding model with diffusion
under general boundary conditions. We also note that some of the more
detailed observations on the dynamics of (1.1) extend to models with dif-
fusion under no-flux (i.e., Neumann) boundary conditions. We end with a
brief section on conclusions.

2. MATHEMATICAL PRELIMINARIES: PERMANENCE

Some of the conclusions of this paper are stated in terms of permanence,
that is, uniform persistence plus dissipativity. A general discussion of per-
manence is given in [17], and the technical aspects of applying the idea in
the context of reaction—diffusion system are treated in [1, 8, 9], so we shall
give only a brief description of permanence here.

Suppose that Y is a complete metric space with Y = Y, U Y, for an
open set Y;. We will typically choose Y to be the positive cone in an
ordered Banach space. A flow or semiflow on Y under which Y; and 7Y,
are forward invariant is said to be permanent if it is dissipative and if there
is a number € > 0 such that any trajectory starting in Y will be at least a
distance € from dY; for all sufficiently large ¢. To state a theorem implying
permanence we need a few definitions. An invariant set M for the flow
or semiflow is said to be isolated if it has a neighborhood U such that M
is the maximal invariant subset of U. Let w(JY;) € JY, denote the union
of the sets w(u) over u € Y. (This differs from the standard definition of
the w-limit set of a set but is more convenient for our purposes; see [17]
for a discussion.) The set w(Y}) is said to be isolated if it has a covering
M = UY_, M, of pairwise disjoint sets M which are isolated and invariant
with respect to the flow or semiflow both on dY; and on Y = ¥, U 7Y,
The covering M is then called an isolated covering. Suppose the N; and
N, are isolated invariant sets (not necessarily distinct). The set Ny is said
to be chained to N, (denoted N; — N,) if there exists u ¢ N; UN, with
u € W*(Ny) N W5(N,). (As usual, W* and W* denote the unstable and
stable manifolds, respectively.) A finite sequence Ny, N,, ..., N of isolated
invariant sets is a chain if Ny — N, — Nj--- — N,. (This is possible for
k =1if N; — Ny.) The chain is called a cycle if N, = N;. The set w(dYp)
is said to be acyclic if there exists an isolated covering U, M, such that
no subset of {M,} is a cycle. We now state a theorem that can be used to
establish permanence.

THEOREM 2.1 [14]. Suppose that Y is a complete metric space with Y =
Y, U dY, where Yy is open. Suppose that a semiflow on Y leaves both Y, and
dY, forward invariant, maps bounded sets in Y to precompact sets for t > 0,




PREDATOR—-PREY MODELS 207

response has the form (after rescaling)

c—i-t—‘- =u(l-u) ——————-—Auv
dt 1+ Bu+Cv
(1.1
dv Euv
Du,

dt 1+Bu+Cv

where u and v represent predator and prey densities, respectively. We
shall consider both the system (1.1) and the analogous system with dif-
fusion in what follows. The functional response in (1.1) was introduced
by Beddington [2] and DeAngelis et al. [12]. It is similar to the well-
known Holling type 2 functional response but has an extra term Cv in the
denominator which models mutual interference between predators. It can
be derived mechanistically via considerations of time utilization [2, 20] or
spatial limits on predation [11]. In [6] we studied reaction-diffusion models
with the Beddington-DeAngelis response from the viewpoint of practical
persistence [5]. That approach is possible only because of the presence of
mutual interference by the predators. In the present article we give a more
complete discussion of the dynamics of (1.1) and analyze (1.1) and the
corresponding diffusive model in terms of permanence (i.e., uniform per-
sistence plus dissipativity.) Permanence typically yields sharper information
on parameter dependence but less sharp information on the behavior of
solutions than practical persistence, so the results of the present paper are
somewhat complementary to those of [5, 6].

There has been considerable interest in ratio-dependent predator-prey
models; see [11] and the references therein. A ratio-dependent version
of (1.1) would have the form

t—i—Lf =u(l—u) ______Auv
dt Bu+Cv
1.2)
513 _ Euv _ Du
dt~ Bu+Cv ’

The ratio-dependent form (1.2) also incorporates mutual interference by
predators, but it has somewhat singular behavior at low densities and has
been criticized on other grounds. See [18] for a mathematical analysis and
the references in [11] for some aspects of the debate among biologists about
ratio dependence. The Beddington—DeAngelis form of functional response
has some of the same qualitative features as the ratio-dependent form but
avoids some of the behaviors of ratio-dependent models at low densities
which have been the source of controversy.

In the next section we give a brief review of the notion of permanence;
in Section 3 we examine the dynamics of (1.1) and give conditions for
permanence, extinction, the presence of limit cycles, and the existence of
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a globally attracting equilibrium. In Section 4 we extend the conditions
for permanence and extinction to the corresponding model with diffusion
under general boundary conditions. We also note that some of the more
detailed observations on the dynamics of (1.1) extend to models with dif-
fusion under no-flux (i.e., Neumann) boundary conditions. We end with a
brief section on conclusions.

2. MATHEMATICAL PRELIMINARIES: PERMANENCE

Some of the conclusions of this paper are stated in terms of permanence,
that is, uniform persistence plus dissipativity. A general discussion of per-
manence is given in [17], and the technical aspects of applying the idea in
the context of reaction—diffusion system are treated in [1, 8, 9], so we shall
give only a brief description of permanence here.

Suppose that Y is a complete metric space with Y = ¥, U Y, for an
open set Y;. We will typically choose Y, to be the positive cone in an
ordered Banach space. A flow or semiflow on Y under which Y; and dY)
are forward invariant is said to be permanent if it is dissipative and if there
is a number € > 0 such that any trajectory starting in ¥, will be at least a
distance e from 3Y, for all sufficiently large ¢. To state a theorem implying
permanence we need a few definitions. An invariant set M for the flow
or semiflow is said to be isolated if it has a neighborhood U such that M
is the maximal invariant subset of U. Let w(dY;) € JY, denote the union
of the sets w(u) over u € 3Y,. (This differs from the standard definition of
the w-limit set of a set but is more convenient for our purposes; see [17]
for a discussion.) The set w(Yy) is said to be isolated if it has a covering
M= Uﬁ;l M, of pairwise disjoint sets M, which are isolated and invariant
with respect to the flow or semiflow both on Y, and on Y = Y, U 7Y,
The covering M is then called an isolated covering. Suppose the N; and
N, are isolated invariant sets (not necessarily distinct). The set N is said
to be chained to N, (denoted N; — N,) if there exists u ¢ N; UN, with
u € WH(N;) N W*(N,). (As usual, W* and W* denote the unstable and
stable manifolds, respectively.) A finite sequence Ny, N, ..., N, of isolated
invariant sets is a chain if Ny — N, — N3 --- — N. (This is possible for
k =1if N; — N;.) The chain is called a cycle if N; = N;. The set w(dYy) .
is said to be acyclic if there exists an isolated covering U, M, such that
no subset of {M,} is a cycle. We now state a theorem that can be used to
establish permanence.

THEOREM 2.1 [14]. Suppose that Y is a complete metric space with Y =
Y, U dY, where Y is open. Suppose that a semiflow on Y leaves both Y, and
JY, forward invariant, maps bounded sets in Y to precompact sets for t > 0,
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and is dissipative. If in addition
(1) «(9Yy) is isolated and acyclic,

(i) WS(M)NYy = forall k, where UN_, My is the isolated covering
used in the definition of acyclicity of dYy,

then the semiflow is permanent; i.e., there exists € > 0 such that any trajectory
with initial data in Yy will be bounded away from JY, by a distance greater
than e for t sufficiently large.

Remarks. 'The notation used here is different than that of [14] because
of the definition we have given for w(dYy). For applications to ordinary
differential equations Y} is usually taken to the positive orthant in R™; for
reaction—diffusion systems Yj is usually taken to be a positive cone in a
space of continuous or differentiable functions; see [1, 8, 9, 17].

A dynamical or semidynamical system is said to be dissipative if there is
a fixed bounded set X, C Y such that if y(¢) is any trajectory, y(¢t) € Xj
for all sufficiently large ¢. How large ¢ must be to insure that y(¢) € X, may
depend on y(0).

3. DYNAMICS ONLY: THE SPATIALLY
HOMOGENEOUS CASE

In this section we shall examine the behavior of the system of ordinary
differential equations which would describe the population dynamics in the
spatially uniform case; namely

du 1 Auv
dt =u(l—u) 1+ Bu+Cv

dv Eu

ar (1+Bu+ Cv D)"‘
As is usual for population models, the system (3.1) leaves the first quadrant
and the coordinate axes invariant. The isocline corresponding to dv/dt =0
is the line v = [(E — BD)u — D]/CD. The isocline for du/dt = 0 is the
hyperbola v = (1 — u)(1 + Bu)/[A — C + Cu]. The possible configurations
of this isocline are shown in Fig. 3.1. Note that the isocline for du/dt =0
has v < 0 for u > 1, with v > 0 when u is less than but close to one.
FA-C>0thenv>0for0<u<1;if A—C < 0 then v > 0 for
(C— A)/C < u < 1, with v — oo on the isocline as u | (C — A4)/C. It is
clear from an examination of the isoclines that there will be an equilibrium
in the first quadrant if and only if the isocline for dv/dt = 0 becomes
positive at some value u < 1, which will be true if and only if

E> (B+1)D. (32)

(.1)
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FIG. 3.1. The three graphs show the isoclines for the system 3.1 for small, medium, and
large values of the parameter C, respectively. (Recall that C measures the amount of mutual
interference by the predators.) Note that as C increases the slope of the predator isocline
decreases, while the prey isocline goes from being concave to convex and then develops a
vertical asymptote.

Elementary algebra shows that if there is a positive equilibrium then it is
unique.

THEOREM 3.1. The system (3.1) is always dissipative in the first quadrant.
It is permanent if and only if (3.2) holds. If the inequality in (3.2) is reversed
then v — 0 as t — oo.

Proof (sketch). Since du/dt < u(1 — u), it follows that for every € > 0
there is a #; (depending on u(0)) such that u < 1+efort>f. fu <2
then dv/dt < {[2E/(1+2B + Cv)] — D}v so that there exists #, (depending
on v(0)) so that v < {[2E — 2BD — D]/CD} + € for t > 1,. Hence the
system (3.1) is dissipative. If we take ¥}, to be the first quadrant then w(dYy)
consists of the equilibria (0, 0) and (1, 0). The stable manifold of (0, 0) is
the v-axis. All trajectories on the u-axis other than (0, 0) approach (1, 0).
It follows from these structural features that the flow in 4(Yy) is acyclic.
If (3.2) holds then dv/dt > 0 for (u,v) with v small and u close to 1,
so the stable manifold of (1, 0) cannot intersect the interior of the first
quadrant. In that case Theorem 2.1 implies permanence. If (3.2) fails then
(3.1) cannot have a positive equilibrium and thus cannot be permanent.
(Permanence implies the existence of a positive equilibrium; see [17].) If
the inequality in (3.2) is reversed then for e sufficiently small and for ¢ large
enough that u < 1 + e we must have dv/dt <0,sov — 0 as t — oo.

LEMMA 3.2. Suppose that (3.2) holds and that
(B~ 1}(E — BD)—-2BD > 0. 3.3)
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If C is sufficiently small then the positive equilibrium of (3.1) is unstable. If in
addition E is sufficiently large then the equilibrium is an unstable spiral point
and (3.1) has a limit cycle.

Proof. 'The local stability properties of the equilibrium can be deter-
mined by direct computation. Let (u*,v*) be the positive equilibrium
of (3.1); then

_ —[A(E - BD) — CE] + /[A(E — BD) — CE} + 4ACDE
- 2CE
2AD

[A(E — BD) — CE] + /[A(E — BD) — CE]? + 4ACDE

u*

(3.4)

It follows from (3.4) that as C — 0, u* — D/(E — BD). The local stability
of (u*,v*) is determined by the Jacobian matrix J of the linearization of
(3.1) around (u*, v*). Computing J from (3.1) and then simplifying using
the equilibrium equations for (3.1) yields the value of the trace of J in
terms of u*; namely

Tr J = —u* + [(BD/E) — (CD/A)](1 — u*).

If we let C — 0 then

D[(B — 1)(E — BD) — 2BD]

T J
Eh E(E — BD)

By (3.3), Tr J > 0 for C sufficiently small. Since Tr J is the sum of the
real parts of the eigenvalues of J, it follows that at least one eigenvalue
must have a positive real part if (3.3) holds and C is small, so that (u*, v*)
is unstable. If we compute the coefficients of the characteristic polynomial
of J and compute the limit as C — 0, a similar but messier calculation
shows that the discriminant of the characteristic polynomial will be nega-
tive if E is sufficiently large relative to the remaining parameters in (3.1). It
follows that for C small and E large the imaginary parts of the eigenvalues
of J are nonzero, so that (u*, v*) is an unstable spiral point. In that case,
a trajectory that starts near (u*, v*) will rotate around the equilibrium and
intersect the radial ray along which it started at some point further away
from (u*, v*). By connecting those two points on the ray with a line seg-
ment we can construct a neighborhood of (u*, v*) from which trajectories
exit but do not return. Since (3.2) holds, the system (3.1) is permanent.
Permanence implies that the system (3.1) has a compact attractor lying
in the interior of the positive cone which is globally attracting for posi-
tive solutions; see [17]. The trajectories which leave the vicinity of (u*, v*)
but do not return must have e-limit sets in the attractor but distinct from
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(u*, v*). By the Poincaré-Bendixson theorem, such w-limit sets are neces-
sarily either periodic orbits or equilibria. The equilibrium (©*, v*) is unique,
so the attractor must contain at least one periodic orbit.

Remark. As C—>0, the limiting system corresponding to (3.1) is a
predator—prey model with a Holling type 2 functional response. Such
models are known to have periodic orbits for some parameter values, so
Lemma 3.2 may be considered as a type of perturbation result.

To conclude our discussion of the system (3.1) we give a sufficient condi-
tion for the global asymptotic stability of the positive equilibrium (u*, v*).

LemmMa 3.3. If
B(l-u*) <1 (3.5)
then (u*, v*) is globally asymptotically stable.

Remark. If B < 1 then (3.5) holds automatically. For the instability con-
dition (3.3) to hold it is necessary (but not sufficient) that B > 1. The value
of u* is given in (3.4). As C — o0, u* — 1 so (3.5) holds for large C.

If B > 1 then (3.5) may be rewritten as

AB[(B — 1)E — B’D]

C>—FB-1

(3.6)

(B—1)E-B*D <0 (3.7

then (3.6) holds automatically so that the equilibrium (u*, v*) is always sta-
ble. Thus, C is relevant in determining whether (u*, v*) is globally assymp-
totically stable only if (3.7) does not hold. (Note that B < 1 implies (3.7).) If
condition (3.3) holds then C is crucial in determining the stability or insta- .
bility of («*, v*). Under condition (3.3), Lemma 3.2 implies that (u*, v*)
is unstable for C small. However, even if (3.3) holds, Lemma 3.3 implies
that (u*, v*) is globally asymptotically stable if C is large enough to satisfy
(3.6). Note that (3.3) could be written E(B — 1) — B2D > BD, so that (3.3)
is stronger than the reverse of (3.7). If (3.7) is reversed but (3.3) does not
hold we do not know whether (*, v*) becomes unstable for C small;- but
(3.6) still implies global asymptotic stability for C large.
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Proof. The proof is based on a Lyapunov function. Let V] = u — u* —
u*In(u/u*) and V; = v — v* — v*In(v/v*). This sort of Lyapunov function
has been widely used; see, e.g., [13]. It is easy to see that JV;/du > 0 for
u > u* and dV; /du < 0 for 0 < u < u*, and similarly 9V, /dv > 0 for v > v*
and dV,/dv < 0 for 0 < v < v*. If we compute dV;(u(t))/dt via (3.1) we
obtain

0 5) v s}

dt 1+Bu-+Cv
Av* Av
o ¥ * —
(u—u )[” “* I Bt 1—|—Bu+Cv]
(-t (u—u*)[ABv*(u—u*)—(ABu* + A)(v—v*)] (338
. (1+Bu*+Cv*)(1+Bu+Cv) - 38
Similarly,
dVy(v) ( v*) Eu
2V (1Y -y —2
dt v [ +1+Bu+Cv]v
- v*)[ Eu _ Eu*
1+Bu+Cv 14 Bu*4Cv*
_E(y— v*)[(u — u*)+ Cv*(u — u*) + Cu*(v* — v)
(1 + Bu + Cv)(1 4 Bu* + Cv*)
_EQ+Cv)(w—v*)(u—u*) — CEu(v— v*)?
(1+ Bu + Cv)(1 + Bu* + Cv*) (3.9)

Define V =Vi(u) + [A(1 + Bu*)/E(1 + Cv*)]V3(v). Computing dV/dt
via (3.8) and (3.9) yields

av
dt

ABv*(u — u*)?
(1 + Bu -+ Cv)(1 + Bu* + Cv*)
B ACu*(1 4+ Bu*)(v — v*)?
(14 Cv*)(1 + Bu + Cv)(1 + Bu* + Cv*)’

=—(u—w) +

(3.10)

The coefficient of (v — v*)? is always negative. The coefficient of (1 — u*)? is

14 ABv* <_1 ABv*
(1+ Bu + Cv)(1 + Bu* + Cv*) — e 1+ Bu* 4 Cv*
= -1+ B(1 —u*).

214 CANTRELL AND COSNER

It follows that if (3.5) holds then (3.10) implies dV/dt < 0 along all tra-
jectories in the first quadrant except (u*,v*), so that (u*,v*) is globally
asymptotically stable.

Biological Remarks. 'The system (3.1) could be viewed as a standard
predator-prey model with a Holling type 2 functional response, but with
an extra term Cv describing mutual feeding interference by predators. The
parameter C measures the degree of mutual interference. It does not affect
the criterion (3.2) for persistence of both species, but this observation must
be used cautiously since C does affect the location and stability of the equi-
librium (#*, v*). When C is small, the system behaves in roughly the same
way as the corresponding system with C = 0. For small C the equilibrium
(u*, v*) may be unstable and there may be periodic solutions. ‘As C — o0
the equilibrium becomes stable, so in that sense increasing C stabilizes the
system. However, v* — 0 as C — 00, so if demographic stochasticity were
present the predator might be at risk of stochastic extinction if the degree of
mutual interference held the predator population to a sufficiently low level.
All of the other parameters in (3.1) are analogous to those in a standard
Holling type 2 model and have the same general effects on the predictions
of the model.

The qualitative description in the preceding paragraph can be sharpened
by examining the stability and instability criteria more closely. By the dis-
cussion following Lemma 3.3, we can see that the equilibrium (u*, v*) for
(3.1) will be globally asymptotically stable for all values of C provided that
(B — 1)E — B*D < 0, which is true in particular if B < 1. In that case C
can affect the size of u* and v* but not the stability of the equilibrium.
On the other hand, if (3.3) holds then (u*,v*) is unstable for C small
but globally asymptotically stable for C large, in particular if (3.6) holds.
Thus, when (3.3) holds, C plays an important role in determining the sta-
bility of (u*, v*). In the proof of Lemma 3.2, which implies the instability
of (u*, v*) for small C if (3.3) holds, one could solve the instability condi-
tion Tr J > 0 (i.e., —u* + [(BD/E) — (CD/A)I(1 — u*) > 0) for C. How-
ever, this leads to a condition on C which is complicated and not very
illuminating.

In addition to the effects of C on the size and stability of the equilibrium,
having C > 0 can “stabilize” the system by reducing the extent to which tra- -
jectories can exhibit “boom-bust” behavior, where the predator population
rises to high levels and then both populations decline dramatically. If C is
relatively large, the methods of [5-7] can be used to obtain explicit bounds
on trajectories. The effect of C > 0 is to introduce a self-limiting term into
the predator equation which is roughly analogous to the logistic term in the
prey equation. The presence of self-limitation reduces the extent to which
the predator population can support a “boom.”
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4. DYNAMICS AND DIFFUSION

In this section we discuss the model

Auv
=d,V* ) i
u,=d;V-u+u(l—u) 1T But Co in O x (0, c0) “
Eu )
=d, V2 — i
v=d, u+(1+Bu+Cv D)v in Q) x (0, 00)

ﬁu+(1—B)g—$=0 on 40} x (0, co0)

d
7v+(1"7)5,%=0 on Q) x (0, co),

where d;,d, > 0, € R" is bounded with J{) smooth, d/dn denotes the
outward normal derivative on 0}, and B, y € [0, 1]. The first observation
is that in the case 8 = y = 0 corresponding to no-flux (i.e., Neumann or
reflecting) boundary conditions, any solution of (3.1) is also a solution of
(4.1). Hence, (4.1) may have limit cycles, so we cannot expect persistence to
be limited to cases where there is a globally attracting equilibrium. It follows
that permanence or some related notion of persistence is appropriate.

The analysis of (4.1) uses a number of results about single reaction—
diffusion equations and related eigenvalue problems which we shall state
next.

LeMmMmA 4.1, If m(x) is continuous on ) and positive on an open subset
of Q, the eigenvalue problem

Vi + Am(x)dp =0 on Q
4.2
B¢+(1—B)%;—é=0 on Q) 42

has a unique positive principal eigenvalue Af(m, B) which admits a positive
eigenfunction. The eigenvalue problem

AVl +m(x)p=0¢ inQ
4.3
B!//-i—(l—ﬁ)%l;l:—zﬂ on 38} (4-3)

has a unique principal eigenvalue ay(d, m, B) which admits a positive eigen-
function. We have oy(d, m, B) > 0 if and only if d\{ (m, B) < 1.

Discussion. This result follows from general results given in [16]; see
also [21] for the case of Neumann boundary conditions and [4, p. 1049] for
the case of Dirichlet conditions.

s

R —
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LeMMA 4.2. Suppose that f(x, w) is smooth and is decreasing in w, with
f(x,0) > 0 on an open subset of Q). Suppose further that there exists a constant
K so that f(x, w) < 0 for w > K. Then the equation

w, = dVw —|—f(ax, w)w in Q x (0, c0)
ﬁw—}—(l—ﬁ)%zo on /2 x (0, co)

+

(4.4)

has a unique positive equilibrium W, which is globally attracting among positive
solutions, if and only if dAT (f(x, 0), B) < 1 (equivalently ay(d, f(x,0), B) >
0). If dA{ (f(x,0), B) = 1 then all positive solutions of (4.4) approach zero
as t —» 0. ' :

Discussion. The case of Dirichlet boundary conditions is treated in
[3, 4, 6]. The case of general boundary conditions follows from the same
arguments as in [16].

Remark. The condition dA](f(x,0),8) < 1 is equivalent to oy(d,
f(x,0), B) > 0 by Lemma 4.1.

COROLLARY 4.3. The problem
u, = d;Vu+u(l - u) in O x (0, c0) »
4.5)

ﬁu—l—(l-ﬁ)%:O on Q) x (0, 00)

has a unique equilibrium @t > 0 which is globally attracting among positive.
solutions if and only if d;Af (1, B) < 1, or equivalently o7(dy, 1, B) > 0. If
diA{ (1, B) = 1 then all solutions of (4.5) approach zero as t — oo.

To formulate a result on permanence we need to interpret (4.1) as a
semidynamical system on an appropriate space. Let

— a
XB={ueCI(Q):Bu+(1—B)£=Oonﬁﬂ}.
Let .
{ueXB:u>00n(_),} if B<1
X5 = '
B~ Ju .
{ueXﬂ:u>OonQand—ﬁ—n-<OondQ] if p=1.
Then let Yy = X; x X3 and let ¥ = Y, UJY, < [C'(Q)]~

THEOREM 4.4. The system (4.1) generates a dissipative semiflow on Y for
which Y, and 3Y, are forward invariant. If diAT(1, B) > 1 (equivalently
o1(dy, 1, B) < 0) then the system (4.1) is not permanent. If diA{ (1, 8) < 1
(equivalently ay(dy, 1, B) > 0) the system is permanent if and only if

Eir
oy (dz, m — D, 'y) > 0, (4.6)
where 1 is the positive equilibrium of (4.5).
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Discussion. The conclusion that (4.1) ge}lerates a semiflow on Y with
Y, and 9Y, forward invariant follows as in [8]; see also [16, 17]. Dissipativity
follows as in Lemmas 4.1 and 4.3 of [8]. (See also [9, 17].) To see that (4.1)
cannot be permanent if d;Af (1, B) > 1, note that if (u,v) isa nonnegative
solution to (4.1) then u is a subsolution to (4.5). It follows that if i is
the solution to (4.5) with @i(x, 0) = u(x, 0) then 0 < u < i for all # > 0.
However, by Corollary 4.3, i — 0 as t — oo if diAf(1,B)=>1,s0u—0
as ¢ —> oo and hence (4.1) is not permanent. If diAf (1, B) < 1 and (4.6)
holds then permanence in (4.1) follows as in [8, Theorem 5.3]. Alternatively,
the strong maximum principle implies that any solution of (4.1) which lies
in 9Y, must be of the form (u,0) or (0,v). For solutions of the form
(0,v) we have v, = d, Vv — Dv in Q' x (0,00) so v — 0 as ¢ — 00} for
solutions of the form (u,0) we have u — i as t — oo by Corollary 4.3.
Since w(dY,) for (4.1) consists of (0,0) and (&, 0) with solutions of the
form (u, 0) approaching (i, 0) and solutions of the form (0, v) approaching
(0, 0), permanence follows from Theorem 2.1 as in [9] if (4.6) holds. If (4.6)
does not hold then (4.1) cannot have a positive equilibrium and thus cannot
be permanent. (Permanence implies the existence of a positive equilibrium;
see [8, 17].) If (u*, v*) is a positive equilibrium of (4.1) then u* is a strict
subsolution of (4.5), and since any sufficiently large constant K is a strict
supersolution there must be a solution & with u* < & < K on Q. Since u
is the unique positive solution of (4.5), & = & and hence u* < it on Q. The
equation for v* is '

Eu*
dvz* _.—_————————-—-—-D *:0 i Q
Z_U Jr(1—!—Bu“‘+Cv* )v m‘

Ju*
*(l—y)— =0 J0.
(1 =-v)5 on

Since v* > 0 in  we have oy(d,, [Eu*/(1 + Bu* + Cv*)] - D, v) = 0. How-
ever, ii > u* and v* > 0 so that on Q we have E&/(1+ Bi) > Eu*/(1+
Bu* + Cv*). Standard monotonicity results for eigenvalues then imply

0 = ay(dy, [Ew*/(1+ Bu" + Cv)] = D, v)
< Ul(dZv [El'—‘/(1 + Bﬁ)] - D, 7):
so permanence implies that (4.6) holds.

Remarks. (1) The condition (4.6) is analogous to (3.2). In the
case B=v=0 (no flux boundary conditions) we have #=1 and thus
oy(dy, [Eii/(1 + Bit)] — D,0)=[E/(1 + B)] — D so that (4.6) reduces
to (3.2).

(2) The biological interpretation of (4.6) is that if the system is at the
equilibrium (i, 0) with no predators and a small number of predators are
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introduced then the number of predators can be expected to increase. In

other words, (4.6) says that the system (4.1) with the prey at equilibrium

and no predators is invasible by the predators. Thus, Theorem 4.4 can

be interpreted as saying that both predator and prey populations can be

expected to persist if the prey can sustain a positive equilibrium population

in the absence of predators and the predators can invade the system with -
the prey at equilibrium.

To understand fully how the coefficients of (4.1) affect permanence, it is
of interest to estimate the eigenvalue oy(d,, [Ei/(1+ Bii)] — D, v) in 4.6.

LemMA 4.5.
Ei E : '
1 (d2: 1+ Ba D, ’)’) =< 178 D —d, A (1, ). 4.7

Proof. By the strong maximum principle we have & < 1 in (. Mono-
tonicity of eigenvalues then implies

Eu E
Ul(dZs T—lTB_L_t ~ D, ’)’) = 01<d2, 1—_;‘35 - D, 7)

E +
P m —'D — dZ)‘l (1, ’)’)

C(ZOROLLARY 4.6. Hypothesis (3.2) is always necessary for permanence
in (4.1).

In general, loss of permanence does not imply deterministic extinction
for either species. However, something close to that is true for (4.1).
X

PEOPOSITION 4.7. If diAf(,B)=1 (e, oy(d,1,B8)<0) or if
diA{ (1, B) <1 and oy(d,, [Ea/(1+ Bir)] — D, y) <0, then v—> 0 as t — o9.

Proof. 'We showed in the proof of Theorem 4.4 that if d;A] (1, 8) > 1
then for any positive solution (u,v) of (4.1), u - 0 as ¢t — oco0. f u <
D/(2E) then v, < d,V?v — (D/2)vso v — 0 as t — co. If d;Af (1, B) < 1
then solutions of (4.5) approach #& as ¢ — oco. Suppose i satisfies (4.5) with
i(x, 0) = u(x,0). Then, since u is a subsolution to (4.5), we have u < @.
Because &L — i as t — oo, we have u < @I < (1+ €)ii for any € > 0 for -
sufficiently large ¢. Thus, for large ¢, v is a subsolution of

Ei(l+€)
14+ Bia(1+¢€)+ Cw

w,=d2V2w+( —D)w in  x (0, 00)
(4.8)

Jw
'yw+(1—y)—&—;=0 on 48 x (0, co).
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If 0y(d,, [E/(1 + Bi)] — D, y) < 0, then by continuity of eigenvalues we
have

0y (dy, [Eii(1 + €)/(1 + Bii(1+ €))] - D, y) < 0 (4.9)

for € > 0 sufficiently small. Inequality (4.9) implies d,A{ ([Ea(1 + €)/(1 +
Bii(1+€))] — D, v) > 1 by Lemma 4.1, so by Lemma 4.2 all positive solu-
tions of (4.8) approach zero as ¢ — oo. Since v is a subsolution of (4.8) we
must have v — 0 as ¢t — co as well.

In the case where the system (4.1) is permanent it is difficult to give a
complete description of its dynamics. Permanence implies the existence of
at least one positive equilibrium (u*, v*) but the equilibrium might be
unstable. In general, permanence neither implies nor rules out the pres-
ence of additional equilibria. In this specific system there is no clear mech-
anism that would lead to multiple equilibria in the presence of diffusion, so
theré is no strong reason to suspect that there will be multiple equilibria,
but we cannot rule out the possibility on the basis of our present analy-

~sis. We began this section with the observation that in the case of no-flux
boundary conditions (8 = y = 0) solutions of (3.1) are solutions of (4.1).
Thus, if B = y = 0, the system (4.1) will have periodic solutions for cer-
tain parameter values, because (3.1) does. We have not attempted to show
the existence of periodic solutions for B, y € (0, 1] but we expect that such
solutions will exist for certain parameter values, at least if 8 and y are
small. We conclude with an extension of Lemma 3.3 to the case of (4.1)
with no-flux boundary conditions.

PROPOSITION 4.8.  Suppose that (3.2) holds so that the system (3.1) has a
positive equilibrium (u*, v*). If (3.5) holds then (u*, v*) is globally asymptot-
ically stable among positive solutions of (4.1) under no-flux boundary condi-
tions (B =vy=0).

Proof. The Lyapunov function ¥ used in the proof of Lemma 3.3 has
the form V = V(1) + kV,(v) with V(1) = u*/u? and V;'(v) = v*/v?
where k is a positive constant. Since the system (4.1) is dissipative it fol-
lows that all trajectories are eventually uniformly bounded in L*({2) as in
[8]. Hence, V}" and V" are positive and bounded below for large . Since
we also have Vl(u ) = V{(u*) = L(v*) = V5 (v*) = 0, it follows that for
(u, v) € (0, Uy] x (0, V3] we have V] > ¢;(u— u*)? and ¥, > ¢,(v — v*)? for
some positive constants ¢; and ¢,. By the form of V' and the convexity of
V; and V, we have that -

E(t) = fﬂ V(u(x, 1), v(x, t)) dx

is a Lyapunov function for (4.1) in the sense that E’(t) < 0 along trajecto-
ries except at (u*, v*) and E(¢) > 0 except at (1*, v*); see [19], for example.
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It follows that E(¢f) — 0 as ¢ — oo. Since all trajectories of (4.1) eventu-
ally must lie in (0, U,] x (0, V], we have (u, v) — (u*, v*) in [L2(Q)]%. In
general the issue of obtaining L* bounds from L? bounds in somewhat del-
icate (see [8, 10, 15, 19]) but since we already know that (4.1) is dissipative
we may write it (for ¢ sufficiently large) as

—d;Vu=p(x, Hu

4.10
— d,Viu=gq(x, t)v (+10)
with p and ¢ bounded in L*° independent of the particular‘trajectory (u, v).
Because of the form of (4.10), standard “bootstrapping” arguments as used
in [10, 15] as well as more sophisticated arguments of the same sort [8, 19]
imply that (u, v) — (¢*, v*) in [L®(Q)]? as ¢ — oo.

Biological remarks. The diffusive model (4.1) shares many of the fea-
tures of the spatially homogeneous model (3.1). In particular, the condi-
tion (4.6) for permanence in (4.1) involves the parameters E, B, and D but
not A or C. (In (4.6) the diffusion rates and boundary conditions also play
a role, either directly or via i2.) Whenever (4.1) is permanent it must as a
consequence have an equilibrium, and if the inequality (4.6) implying per-
manence is reversed then by Proposition 4.7 we have v — 0 as t — oo
so no equilibrium is possible. Thus, as in the spatially homogeneous case,
the conditions for permanence and the existence of a positive equilibrium
are essentially the same. We have not analyzed the uniqueness or stabil-
ity of the equilibrium in the general diffusive model. In the case of no-flux
boundary conditions solutions to (3.1) are also solutions to (4.1) so (4.1)
will sometimes have an unstable equilibrium and a periodic solution. We
suspect that this is also the case for other boundary conditions but we have
not tried to prove it. Although the coefficient C does not enter into the
condition (4.6) for permanence, it may affect the stability of the equilib-
rium (e.g., in the no-flux case discussed in Proposition 4.8) and it may also
affect the size of the equilibrium and the extent to which the predator pop-
ulation can experience “booms” resulting in later “busts.” This is shown in
the analysis in [6], which can then be combined with the methods of [7]
to give bounds on trajectories. In theory, the coefficient C does not affect
the prediction of permanence in (4.1). However, the model (4.1) does not
account for demographic stochasticity. If (4.1) predicts coexistence of the
predators and prey but the predicted densities are too low then the actual
populations may be at risk of extinction because of stochastic effects. Since
C does affect the size of possible equilibria [6] and some of the quantitative
features of trajectories [6, 7], it can affect the predicted sizes of populatlons
and hence the risk of stochastic extinctions.
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5. CONCLUSIONS

The Beddington-DeAngelis functional response admits a range of
dynamics which include the possibilities of extinction, persistence, stable or
unstable equilibria, and limit cycles. The criteria for persistence are essen-
tially the same as for systems with a Holling type 2 response, since they
do not involve the extra parameter in the Beddington-DeAngelis response
which describes mutual interference by predators. However, the presence
of mutual interference by predators can stabilize the positive equilib-
rium and eliminate limit cycles. (It can also provide global bounds on the
predator density which preclude extreme “boom-bust” cycles, because it
provides a form of self-limitation by the predator and hence allows the use
of comparison methods to obtain practical persistence; see [6, 7].) Since
the Beddington-DeAngelis response can be generated by a number of
natural mechanisms [2, 11, 20] and because it admits rich but biologically
reasonable dynamics, it seems worthy of further study.
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